Disinfection of Water Borne Pathogens Escherichia coli and Staphylococcus aureus by Solar Photocatalysis Using Sonochemically Synthesized Reusable Ag@ZnO Core-Shell Nanoparticles
نویسندگان
چکیده
Water borne pathogens present a threat to human health and their disinfection from water poses a challenge, prompting search for newer methods and newer materials. Disinfection of Gram-negative bacterium Escherichia coli and Gram-positive coccal bacterium Staphylococcus aureus in aqueous matrix was achieved within 60 and 90 minutes respectively at 350C using solarphotocatalysis mediated by sonochemically synthesized Ag@ZnO core-shell nanoparticles. The efficiency of the process increased with increase in temperature and at 550C the disinfection could be achieved in 45 and 60 min respectively for the two bacteria. A new ultrasound assisted chemical precipitation technique was used for the synthesis of Ag@ZnO core-shell nanoparticles. The characteristics of the synthesized material were established using physical techniques. The material remained stable even at 400o C. Disinfection efficiency of the Ag@ZnO core-shell nanoparticles was confirmed in case of real world water samples from pond, river, municipal tap and was found to be better than that of pure ZnO and TiO2 (Degussa P25). When the nanoparticle based catalyst was recycled and reused for subsequent disinfection experiments, its efficiency did not change remarkably even after three cycles. The sonochemically synthesized Ag@ZnO core-shell nanoparticles have a good potential for application in solar photocatalytic disinfection of water borne pathogens.
منابع مشابه
Disinfection of the Water Borne Pathogens Escherichia coli and Staphylococcus aureus by Solar Photocatalysis Using Sonochemically Synthesized Reusable Ag@ZnO Core-Shell Nanoparticles
Water borne pathogens present a threat to human health and their disinfection from water poses a challenge, prompting the search for newer methods and newer materials. Disinfection of the Gram-negative bacterium Escherichia coli and the Gram-positive coccal bacterium Staphylococcus aureus in an aqueous matrix was achieved within 60 and 90 min, respectively, at 35 °C using solar-photocatalysis m...
متن کاملبررسی خواص ضد میکروبی نانوذرات اکسید روی سنتز شده به کمک امواج اولتراسونیک
Introduction: Introducing a powerful antibacterial agent to control pathogenic bacteria especially strains resistant to antibiotics is of paramount importance. The purpose of this study is ZnO nanoparticles synthesis by using ultrasonic waves and evaluation of its antibacterial properties. Methods: Zinc oxide nanoparticles were synthesized using ultrasound irradiation. Then physical and chemic...
متن کاملPreparation of antibacterial coating film using ZnO nanoparticles and epoxy resin
The production of antibacterial and antifungal nanocomposites is widely usedin pharmaceutical, health, food, packaging and medical industries. Meanwhile,the epoxy coating film is one of the most commonly used protective coatings inindustrial applications. In this work, ZnO nanoparticles were first synthesized atthree different concentrations. UV-Vis spectroscopy and dyna...
متن کاملEffects of combination of magnesium and zinc oxide nanoparticles and heat on Escherichia coli and Staphylococcus aureus bacteria in milk
Objective: The objective of this study was to investigate the antibacterial activities of combination of MgO and ZnO nanoparticles in the presence of heat against Escherichia coli and Staphylococcus aureus. Materials and Methods:Bacteria were grown on either agar or broth media followed by the addition of ZnO and MgO nanoparticles. Then the combined effect of ZnO and MgO nanoparticles was inves...
متن کاملCharacterization and Evaluation of Antimicrobial Effects of ZnO/Ag Nanoparticles Synthesized by Milk Thistle Seed Extract (Silybum marianum): A Short Report
Background and Objectives: The use of nanotechnology is rapidly expanding in various fields, especially in the health and pharmaceutical fields. The purpose of this study was to produce biological Zinc Oxide (ZnO) and silver (Ag) nanoparticles (NPs) using extract of milk thistle seeds and to determine their antibacterial properties. Materials and Methods: In this laboratory study, biologica...
متن کامل